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Adversarial Learning

 AlphaGo
– Convolutional Neural Network (CNN)

 AlphaGo Zero
– Adversarial Network

Source: DeepMind



- 4 -

Generative Adversarial Network (GAN)

 Generative Adversarial Networks
– Introduced by Ian Goodfellow et al. in 2014
– Deep neural network architectures comprised of two nets

 A Generator
 A Discriminator

– Both nets are trying to optimize a different and opposing loss function in a zero-
sum game

 Potential of GAN
– Can be trained to mimic any distribution of data
– Create worlds eerily similar to our own in any domain

 

 

“The most interesting idea in the last 10 years in machine learning” – Yann LeCun
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The Power of GAN

 Can be trained to mimic any distribution of data

 Applications
– Artificial Arts
– Virtual Reality
– New Characters
– Artificial Music

Source: gansynth
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Fundamentals of GAN

 Generator G
– A Function: Input z, Output x
– Given a prior distribution Pprior(z), a probability distribution PG(x) is defined by 

function G

 Discriminator D
– A Function: Input x, Output a scalar
– Evaluate the difference between PG(x) and Pdata(x)
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Kullback–Leibler Divergence

 Kullback–Leibler divergence (Relative Entropy) 
– measures how one probability distribution is different from a reference 

probability distribution
– Given probability distributions P and Q

 Discrete version

𝐷𝐷KL(𝑃𝑃| 𝑄𝑄 = −�
𝑥𝑥

𝑃𝑃 𝑥𝑥 log
𝑄𝑄(𝑥𝑥)
𝑃𝑃(𝑥𝑥)

 Continuous version

𝐷𝐷KL(𝑃𝑃| 𝑄𝑄 = −�𝑃𝑃 𝑥𝑥 log
𝑄𝑄(𝑥𝑥)
𝑃𝑃(𝑥𝑥)

𝑑𝑑𝑥𝑥
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Properties of Kullback–Leibler Divergence

 Explanation of KL divergence

𝐷𝐷KL(𝑃𝑃| 𝑄𝑄 = −�
𝑥𝑥

𝑃𝑃 𝑥𝑥 log
𝑄𝑄 𝑥𝑥
𝑃𝑃 𝑥𝑥

= −�
𝑥𝑥

𝑃𝑃 𝑥𝑥 log𝑄𝑄(𝑥𝑥) − −�
𝑥𝑥

𝑃𝑃 𝑥𝑥 log𝑃𝑃(𝑥𝑥)

 Properties of KL divergence
– Non-symmetric
– Non-negative

Cross Entropy 
of P and Q

Entropy of P
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Jensen-Shannon Divergence

 Jensen-Shannon Divergence
– Measures the similarity between two probability distributions
– A symmetrized and smoothed version of the Kullback–Leibler divergence
– Definition

𝐽𝐽𝐽𝐽𝐷𝐷(𝑃𝑃| 𝑄𝑄 =
1
2𝐷𝐷KL(𝑃𝑃| 𝑀𝑀 +

1
2𝐷𝐷KL(𝑀𝑀| 𝑄𝑄

where

𝑀𝑀 = 1
2

(𝑃𝑃 + 𝑄𝑄)

– Bounds
0 ≤ 𝐽𝐽𝐽𝐽𝐷𝐷(𝑃𝑃| 𝑄𝑄 ≤ log(2)
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GAN Cost Function

 An optimization problem
– Find an optimal generator G* such that

G*=arg minGmaxDV(G,D)

– A MiniMax algorithm

 Cost Function of Binary Classifier
– V = Ex~P_data [log D(x)] + Ex~P_G[log(1-D(x))]

 Minimizing Cross-Entropy
– x is real, minimize -log D(x)
– x is fake, minimize -log(1-D(x))
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max𝐷𝐷𝑉𝑉(𝐺𝐺,𝐷𝐷)

 max𝐷𝐷𝑉𝑉(𝐺𝐺,𝐷𝐷)
– Given a generator G
– maxDV(G,D) evaluates the “difference” between 𝑃𝑃𝐺𝐺 and 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 What is the optimal 𝐷𝐷∗ that maximize 𝑉𝑉(𝐺𝐺,𝐷𝐷)?

𝑉𝑉 = 𝐸𝐸𝑥𝑥~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log 𝐷𝐷 𝑥𝑥 + 𝐸𝐸𝑥𝑥~𝑃𝑃𝐺𝐺 log(1 − 𝐷𝐷 𝑥𝑥 )

= �
𝑥𝑥

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥 log𝐷𝐷 𝑥𝑥 +�
𝑥𝑥

𝑃𝑃𝐺𝐺 𝑥𝑥 log(1 − 𝐷𝐷 𝑥𝑥 )

Then
𝐷𝐷∗ = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥 /(𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥 + 𝑃𝑃𝐺𝐺 𝑥𝑥 )
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min𝐺𝐺max𝐷𝐷𝑉𝑉(𝐺𝐺,𝐷𝐷)

max𝐷𝐷𝑉𝑉 𝐺𝐺,𝐷𝐷
= 𝑉𝑉(𝐺𝐺,𝐷𝐷∗) where  𝐷𝐷∗ = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥 /(𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥 + 𝑃𝑃𝐺𝐺 𝑥𝑥 )

= 𝐸𝐸𝑥𝑥~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝐷𝐷∗ 𝑥𝑥 + 𝐸𝐸𝑥𝑥~𝑃𝑃𝐺𝐺 log(1 − 𝐷𝐷∗ 𝑥𝑥 )

= �
𝑥𝑥

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥 log𝐷𝐷∗ 𝑥𝑥 +�
𝑥𝑥

𝑃𝑃𝐺𝐺 𝑥𝑥 log(1 − 𝐷𝐷∗ 𝑥𝑥 )

= −2log2 + 2𝐽𝐽𝐽𝐽𝐷𝐷(𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑||𝑃𝑃𝐺𝐺)

What is 𝐺𝐺∗ with min𝐺𝐺max𝐷𝐷𝑉𝑉(𝐺𝐺,𝐷𝐷)?
𝐽𝐽𝐽𝐽𝐷𝐷(𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑||𝑃𝑃𝐺𝐺) = 0

i.e., 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑃𝑃𝐺𝐺
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Challenges in GAN Training

 Training a GAN is notoriously difficult
– Perfect Discriminator
– Mode Collapse
– Non-convergence
– Imbalance Generator and Discriminator Training
– Model parameter oscillation
– Destabilization
– Vanishing gradient
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Additional challenges in training an event generation GAN

 Precise Event Feature Distributions
– Replicate the nature of particle reactions faithfully

 Obeying the Fundamental Physics Laws
– Energy Conservation
– Momentum Conservation

 Handling Detector Effects
– Smearing
– Acceptance
– Detector Inefficiency
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Electron-Proton Scattering

 Pythia Events
– Center-of-mass energy of 100 GeV

 Inclusive Simulation
– GAN is only trained on the momenta of the final state electrons
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Classic Monte Carlo Event Generator (MCEG)

 Important tools for studies of high energy 
scattering reactions

– Understanding detector effects
– Building expectations on how experimental data 

should look like under different theoretical 
assumptions

– Justifying the validity of the quantum field theory in 
the underlying models

 Popular MCEGs
– Pythia
– Herwig
– Sherpa

https://theory.slac.stanford.edu/our-research/simulations

https://theory.slac.stanford.edu/our-research/simulations
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Limitations of MCEG

 Assumptions of Monte Carlo event generators 
– The underlying physics theories that govern the production of particles in a 

given reaction
– Femto-scale physics

 Computation
– Efficacy of QCD (quantum chromodynamics) factorization
– Approximation

 partonic dynamics
 nonperturbative amplitudes
 probability distributions

 Limited capability to capture the full range of possible correlations 
between the particles’ momenta and spins
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GAN-based Event Generators

 Learn from real electron-proton 
scattering data

– Capture rich underlying distributions 
over data
 Difficult to model using explicit 

parameters

 Faithfully reproducing particle 
reaction events

– No assumptions on femtometer-scale 
physics theory

 Overcome the limitations of MCEGs

 Proof-of-concept on inclusive 
electrons
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Initial Attempt: Direct Simulation GAN
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Results of Director Simulation
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Features Transformation

 Conversion to eliminate sharp edges

 Guarantee no generation of non-physical electrons
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Features Augmentation and Transformation GAN (FAT-GAN)

 Features Transformation

 Features Augmentation
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Results of FAT-GAN

No more non-physical events
with pz > 50 GeV

Good approximation of Q2 and 
xBj correlation with χ2 = 1.52
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Distributions of Generated Physical Properties
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FAT-GAN on experimental electron-proton scattering data
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A New Problem

 FAT-GAN has difficulty to 
reproduce HERA data

Electron Beam Energy: 27.5 GeV
Proton Beam Energy: 920 GeV
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The Problem

 log(Eb – pz) is not enough
– Need to be aware of the other conditions for physical feasible events
– For example

 XBj < 1.0 (energy conservation)
 2Eb – E – pz > 0
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The solution

 New Generated Features
– Log(E – pz)
– Log(2Eb – E – pz)
– Φ

 Recalculate (E, px, py, pz) from the generated features
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A New FAT-GAN
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New Results for HERA
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Unfolding Vertex-level Events from Detector-level Events

 MLEG
– Transform noise into vertex-level simulated events

 Detector Proxy GAN
– Detected simulator
– Mimic synthetic detector-level events

 Discriminator
– Differentiate detector-level events
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Detector Surrogate

 Detector Proxy GAN
– Conditional GAN
– Training samples

 From guess vertex-level samples and corresponding detector-level samples 
using a detector simulator



- 37 -

EIC Smearing
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Unfolding Results
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Conditional GAN

 A GAN-based Event Generator w.r.t. Beam Energy Input
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Interpolation
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Correlations in Interpolated Beam Energy Levels
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Extrapolation
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Patterns in Hidden Layers

LeCun et al. (2015)
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Pion Photoproduction on the Proton

 𝜸𝜸𝜸𝜸 → 𝜸𝜸𝝅𝝅+𝝅𝝅−

– 𝜸𝜸 and 𝝅𝝅+ generated
– 𝝅𝝅− reconstructed
– 𝜸𝜸 ∈ 3, 3.75 GeV

 Detector Effect
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GAN Architecture

 
    

 
    

 
       

 
       



- 48 -

1D Distributions
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1D Distributions (cont.)
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High-ordered Correlations

Comparison of selected observables derived from experimental CLAS data and GAN-generated synthetic data: (a) yield for the 𝑝𝑝𝑥𝑥′
and 𝑝𝑝𝑦𝑦′ components of the scattered proton momentum in the lab frame, (b) invariant mass distributions for the pion-pion and
proton-pion systems, (c) yields for the angle α (for the bin with 2.55<W<2.60 GeV, 0.74<Mππ<0.87 GeV, 1.21<Mpπ<1.35 GeV,

0.8<cos θπ <0.9), and invariant mass M2
π+π− (for the bin with 2.70<W<2.75 GeV, 1.37<Mpπ<1.51 GeV, 0.9<cos θπ <1.0, 0<α<60o),

(d) moments of the angular distributions Y00 and Y11 versus the ππ invariant mass. For panels (b), (c) and (d), the experimental data
(solid black points with error bars) are compared with the GAN-generated results (red bands), with the uncertainty quantification

shown in the form of pull distributions given by (μC−μG) / σC2+σG2 (blue circles at the bottom of the panels).
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Detector Effect Simulator
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Detector Efficiency Simulator

 A Neural Network to Map the Detector Efficiency
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CLAS Events

 
    

 

 

GAN 
Detector-Level

Events

Unfolding
Preliminary
Results
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CLAS Events
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Open Questions 1) Can GAN-based MCEGs Display Super-Resolution?

 Can GAN-based MCEGs go beyond the 
statistical precision of the training event 
samples?

 Only as much statistical precision as the 
training data can be achieved [Matchev
and Shyamsundar, 2020]

– An MLEG does not add any physics 
knowledge

 Events can be amplified before reaching 
the limitation of the statistics of the 
training data [Butter et al., 2020]

– MLEGs are powerful interpolation tools
– Can add to discrete event data sets by 

enabling denser binning -> higher resolution

Image Source: SRGAN
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Super-resolution in CLAS Data
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Open Questions 2) Can GAN-based MCEGs Faithfully Reproduce Physics?

 Can GAN-based MCEGs fully represent the underlying physics of a 
reaction?

– Critical to many MLEG applications in particle physics
– If not fully, to what extent?

 Currently, lack of comprehensive evaluation framework to thoroughly 
evaluate the quality of GAN-based MCEG events

– Uncertainty Quantification
– Quantifying the correlation among event features with physics meaning
– Measuring the quality of rare events
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Open Questions 3) Can GAN-based MCEGs Provide New Physics Insights?

 Can a GAN-based MCEG go beyond the manifold of its training event data and 
bring physical insight into regions without any data?

– Can GAN-based MCEGs be used for extrapolation?

 Extrapolation Capability of  Neural Network
– Output of a neural network is NOT reliable outside of the range of training samples
– GANs, VAEs, and NFs are fundamentally neural networks
– GAN-based MCEG yields good agreement for interpolating events, but not in 

extrapolating events in electron-proton scattering [Velasco et al., 2020]

 Potential Ways for GAN-based MCEGs to Generate Correct Events in Unknown 
Regions

– Regularizations
 Physics laws in regularization

– Use artificial data samples in the unknown region by physics theory or simulation to 
correct the behavior of GAN-based MCEGs
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Physics-informed Machine Learning

 Pure ML Models
– Promising in Physics Applications

 Computational costly/infeasible
 Not fully understood process

– Limitations
 Large amount of (experimental) data requirement 
 Generalization to lack of sample scenarios
 Physically inconsistent results

 Physics-informed ML
– Integrate physics and ML in a synergistic way
– Tackle more complex problems

 Better generalization
 Less demand on data
 Physically consistent

– ML can reveal unknown physics



- 61 -

Summary

 Development of GAN-based MCEGs is still in its infant stage
– Many Challenges
– Incorporating physics into Machine Learning models is the KEY

 GAN-based MCEGs are not likely to replace classic MCEGs
– MCEGs are used to verify the underlying theory
– Alternative approach of MCEGs to generate physics events

 Much faster event generation
 Agnostic of theoretical assumptions

– Important Applications if the open questions can be justified:
 Super-resolution

– Remedy the statistical weakness of MCEGs
 Extrapolation

– New Physics Insights
 Faithful reproduction

– Compactified data storage utility
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MLEG without Detector Effects as Baseline

MLEG

 Trained MLEG using DIS pseudodata

 Without detector effects
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